Coverage Policies

Use the index below to search for coverage information on specific medical conditions.

QualChoice reserves the right to alter, amend, change or supplement medical policies as needed. QualChoice reviews and authorizes services and substances. CPT and HCPCS codes are listed as a convenience and any absent, new or changed codes do not alter the intent of the policy.

High-Tech Imaging: High-Tech Imaging services are administered by National Imaging Associates, Inc. (NIA). For coverage information and authorizations, click here.

Medical Providers: Payment for care or services is based on eligibility, medical necessity and available benefits at time of service and is subject to all contractual exclusions and limitations, including pre-existing conditions if applicable.

Future eligibility cannot be guaranteed and should be rechecked at time of service. Verify benefits by signing into My Account or calling Customer Service at 800.235.7111 or 501.228.7111.

QualChoice follows care guidelines published by MCG Health.


Effective Date: 01/01/1995 Title: Liver Transplant
Revision Date: 05/01/2015 Document: BI274:00
CPT Code(s): 47133, 47135, 47140-47147
Public Statement

Effective Date:

a)    This policy will apply to all services performed on or after the above revision date which will become the new effective date.

b)    For all services referred to in this policy that were performed before the revision date, contact customer service for the rules that would apply.


QualChoice maintains a national network of Centers of Excellence for members who require transplantation.


Transplants and transplant related services are covered only when performed at a transplant center previously approved by QualChoice.

  1. Progressive liver diseases that can result in death either in short-term or long-term is known as end-stage liver disease (ESLD).
  2. ESLD is treated with transplantation of the liver.
  3. Liver transplantation requires pre-authorization.

Medical Statement

1.    Orthotopic (normal anatomical position) liver transplantation (with cadaver organ, reduced-size organ, living related organ, and split liver) is considered medically necessary for members with end-stage liver disease (ESLD) for:

A.   Adolescents (12 years to 18 years) and adults who meet the specific criteria below and
with either;

                                    I.        A Model of End-stage Liver Disease (MELD) score (MELD calculator) greater than 10; or

                                  II.        Who are approved for transplant by the United Network for Organ Sharing (UNOS) Regional Review Board.

B.   For children less than 12 years of age who meet the transplanting institution`s selection criteria and the specific criteria below.  The transplant and transplant related services will only be covered if the transplant center is an approved QualChoice provider.

2.    Specific criteria:

A.   Cholestatic diseases:

                                                  i.    Biliary atresia

                                                ii.    Familial cholestatic syndromes

                                               iii.    Primary biliary cirrhosis

                                               iv.    Primary sclerosing cholangitis with development of secondary biliary cirrhosis

B.   Hepatocellular diseases:

                                                  i.    Chronic active hepatitis with cirrhosis (hepatitis B or C)

                                                ii.    Cryptogenic cirrhosis

                                               iii.    Idiopathic autoimmune hepatitis

                                               iv.    Post necrotic cirrhosis due to hepatitis B surface antigen negative state

                                                v.    Alcoholic cirrhosis

C.   Malignancies:

                                                  i.    Primary hepatocellular carcinoma confined to the liver when all of the following criteria are met:

1.    Member is not a candidate for subtotal liver resection; and

2.    Member meets UNOS criteria for tumor size and number; and

3.    There is no macrovascular involvement; and

4.    Any lung metastases have been shown to be responsive to chemotherapy; and

5.    There is no identifiable extrahepatic spread of tumor to surrounding lymph nodes, abdominal organs, bone or other sites.

Note: These criteria are intended to be consistent with United Network for Organ Sharing (UNOS) guidelines for selection of liver transplant candidates for hepatocellular carcinoma.

                                                ii.    Hepatoblastomas in children when all of the following criteria are met:

1.    Member is not a candidate for subtotal liver resection; and

2.    The member meets UNOS criteria for tumor size and number; and

3.    There is no identifiable extrahepatic spread of tumor to surrounding lungs, abdominal organs, bone or other sites. (Note: spread of hepatoblastoma to veins and lymph nodes does not disqualify a member for coverage of a liver transplant.)

                                               iii.    Intrahepatic cholangiocarcinomas (i.e., cholangiocarcinomas confined to the liver);

                                               iv.    Large, unresectable fibrolamellar hepatocellular carcinomas;

                                                v.    Epithelioid hemangioendotheliomas (EHE);

                                               vi.    Metastatic neuroendocrine tumors (carcinoid tumors, apudomas, gastrinomas, glucagonomas) in persons with severe symptoms and with metastases restricted to the liver, who are unresponsive to adjuvant therapy after aggressive surgical resection including excision of the primary lesion and reduction of hepatic metastases.

D.   Vascular diseases:

                                                  i.    Budd-Chiari syndrome

                                                ii.    Veno-occlusive disease.

E.   Metabolic disorders and metabolic liver diseases with cirrhosis (not an all-inclusive list):

                                                  i.    Alpha 1-antitrypsin deficiency

                                                ii.    Hemochromatosis

                                               iii.    Inborn errors of metabolism

                                               iv.    Protoporphyria

                                                v.    Wilson`s disease.

F.    Miscellaneous:

                                                  i.    Polycystic disease of the liver.

                                                ii.    Familial amyloid polyneuropathy.

                                               iii.    Trauma.

                                               iv.    Toxic reactions (fulminant hepatic failure due to mushroom poisoning, acetaminophen (Tylenol) overdose, etc.).

                                                v.    Portopulmonary hypertension (pulmonary hypertension associated with liver disease or portal hypertension) in persons with a mean pulmonary artery pressure by catheterization of less than 35 mm Hg.

                                               vi.    Hepatopulmonary syndrome when the following selection criteria are met:

1.    Chronic liver disease with non-cirrhotic portal hypertension; and

2.    Arterial hypoxemia (PaO2 less than 60 mm Hg or AaO2 gradient greater than 20 mm Hg in supine or standing position); and

3.    Intrapulmonary vascular dilatation (as indicated by contrast-enhanced echocardiography, technetium-99 macroaggregated albumin perfusion scan, or pulmonary angiography).

Codes Used In This BI:


Removal of donor liver


Transplantation of liver


Partial removal donor liver


Partial removal donor liver


Partial removal donor liver


Prep donor liver whole


Prep donor liver 3-segment


Prep donor liver lobe split


Prep donor liver/venous


Prep donor liver/arterial

  1. Requests for liver transplantation for adolescents and adults with a MELD score of 10 or less who have not been approved by the UNOS Regional Review Board are not covered.

2.    Retransplantation:
QualChoice considers retransplantation following a failed liver transplant medically necessary if the initial transplant was performed for a covered indication.

3.    Contraindications:
QualChoice considers liver transplantation to be non covered for members with any of the following absolute contraindications to liver transplantation:

    1. Use of alcohol within the last six (6) months
    2. Use of illicit drugs within the last six (6) months
    3. Abuse of any substances within the last six (6) months
    4. Active sepsis outside the biliary tract
    5. Presence of significant organ system failure other than kidney, liver or small bowel
    6. Other effective medical treatments or surgical options are available.

4.    Experimental and Investigational Procedures:
QualChoice considers the following indications/procedures regarding liver transplantation experimental and investigational:

    1. Malignancies other than those listed as covered above
    2. Ectopic or auxiliary liver transplantation
    3. Xenotransplantation
    4. Hepatocellular transplantation

e.    Bioartificial liver transplantation.


Progressive liver diseases that result in death either in short-term or long-term is known as end-stage liver disease (ESLD), which is evidenced by irreversible, progressive liver dysfunction, variceal bleeding, encephalopathy, synthetic dysfunction, poor growth, or poor nutritional status. The most common causes of ESLD include infection (e.g., acute or chronic hepatitis), toxic effects (e.g., alcohol, medications), disorders of metabolism (e.g., hemochromatosis, Wilson`s disease), tumors (primary or metastatic), and malformations (e.g., primary biliary atresia). Liver transplantation is an effective treatment for fulminant (acute) hepatic failure and for many chronic liver diseases.

A liver transplant is usually positioned in the normal anatomical position (orthotopic) following a total hepatectomy of the recipient. In auxiliary liver transplantation, a second liver is implanted ectopically and the recipient`s own liver remains in situ. A major concern of ectopic transplantation is the recipient`s diseased liver may harbor bacterial, fungal or viral infection or cancer. Advances in surgical techniques and immunosuppressive drugs have resulted in increased survival rates (with 1-year survival rates in the 85 to 90% range, and 5-year survival rates exceeding 70%). Currently, 10 to 20% of liver transplanted patients are re-transplanted with a success rate of greater than 50%.

Hepatitis C cirrhosis is the most common indication for liver transplantation. Alcoholic liver disease remains a controversial indication for liver transplantation but carefully selected patients do well. Some of the common indications for liver transplantation are as follows:

  1. Primary biliary cirrhosis
  2. Primary sclerosing cholangitis
  3. Cryptogenic cirrhosis
  4. Chronic active hepatitis (usually secondary to hepatitis B and C)
  5. Alcoholic liver disease (after a period of abstinence).

Hepatocellular carcinoma complicates many chronic liver diseases. However, a small tumor is not a contraindication to transplantation since tumor rarely recurs in these patients. In contrast, most patients with large (> 5 cm in diameter) or multiple hepatomas or most other types of cancer are not considered for transplantation since tumors recur rapidly. At present, there is insufficient evidence that liver transplantation is an effective treatment for other malignancies that affect the liver such as metastatic disease, bile duct carcinoma, and epitheloid hemangioendothelioma, among others. An assessment by the Agency for Healthcare Research and Quality (Beavers, et al., 2001) on liver transplantation for malignancies other than hepatocellular carcinoma concluded that “[t]he available evidence does not provide a clear profile of patients who might be optimal candidates for such therapy.” Contraindications to liver transplantation include extrahepatic malignancy, severe cardiopulmonary disease, systemic sepsis, and an inability to comply with regular pharmacotherapy.

Liver transplantation is an effective treatment for a variety of acute and chronic diseases of the liver in the pediatric (< 18 years of age) population. Approximately 15% of the liver transplantations performed yearly in the United States are in pediatric patients. Most children who need liver transplantation are young (age < 3 years) and small (body weight < 45 pounds). Size-matched organs are given preference in organ allocation. However, because of the severe scarcity of pediatric donor livers, techniques such as reduced size (“cut down”) and split (a liver is split between 2 recipients) liver transplantations are used to reduce the size of adult donor livers to fit pediatric recipients. Donation of the left lobe of the liver by a living adult relative (“living related donor”) is also an option. Liver transplantation in children is indicated for ESLD from any etiology in the absence of contraindications. The most common indication for pediatric liver transplantation is biliary atresia, often after failure to respond to a portoenterostomy. In addition, unresectable tumors and liver-based metabolic deficiencies may be indications for liver transplantation.

The Model for End-Stage Liver Disease (MELD) is a numerical scale, ranging from 6 (less ill) to 40 (gravely ill), that is used for adult liver transplant candidates. It gives each individual a `score` (number) based on how urgently he or she needs a liver transplant within the next three months. The number is calculated by a formula using bilirubin, prothrombin time, and creatinine. Candidates under the age of 12 are placed in categories according to the Pediatric End-stage Liver Disease (PELD) scoring system. PELD is similar to MELD but uses some different criteria to recognize the specific growth and development needs of children. PELD scores may also range higher or lower than the range of MELD scores. The PELD scoring system takes into account the patient`s bilirubin, prothrombin time, albumin, growth failure, and whether the child is less than one year old. A liver transplantion is rarely necessary for persons with a MELD score of less than 10. According to data from the United Network for Organ Sharing, of almost 5000 liver transplants that were performed in 2002, only 181 transplants were performed on patients with a MELD score of less than 10. 

The MELD/PELD score is a well-validated measure of short-term mortality from liver disease; however, referring physicians who believe a patient faces a greater mortality risk than predicted by the MELD/PELD score can request accelerated listing. UNOS Regional Review Boards can approve or deny these requests, and a study by Voight, et al. (2004) concluded that these boards fairly and accurately distinguish between high and low risk patients. The study found that the denials of physicians` requests for accelerated listings did not increase mortality for those patients. To determine the effect of UNOS Regional Review Board decisions on the mortality of physician-referred patients, investigators analyzed 1,965 nationwide referrals to UNOS Regional Review Boards. They noted which cases were approved and which were denied, and gathered information about patient deaths while awaiting transplantation. The investigators found that there was no significant difference in survival to transplantation whether accelerated listing was approved or denied for adult or pediatric cases. In addition, the researchers examined whether or not referring physicians predicted death better than the MELD/PELD score. The investigators found that the physicians had poor predictive capacity and added no additional information to to the risk assessment by the MELD/PELD score. The investigators concluded that  the MELD-PELD score is a better predictor of mortality than the judgement of the referring physician, but the UNOS Regional Review Board process adds additional information (see, e.g., Voight, et al., 2004).

The success of transplantation has led to a marked increase in the number of candidates to over 16,000 places on the national waiting list. However, there has been little growth in the supply of available cadaveric organs, resulting in an organ shortage crisis. With waiting times often exceeding 1 to 2 years, the waiting list death rate now exceeds 10% in most regions. Researchers have investigated novel approaches such as xenotransplantation, hepatocellular transplantation and bioartificial liver to address the growing disparity between the limited supply and excessive demand for suitable organs. However, all these approaches are considered investigational in nature at this juncture.

Studies on xenotransplantation are performed using primates (e.g., baboons, and smaller monkeys). Transmission of diseases, which can be transmitted from animals to humans under natural conditions (zoonoses) as well as hyperacute rejection remains major concerns in xenotransplantation. Hepatocellular transplantation is used either to temporarily or permanently replace the diseased liver. Hepatocytes are seeded onto biodegradable polymer that serves as a temporary extracellular matrix and to induce vascular in-growth. The seeded polymer is then implanted into a vascular rich area, such as the mesentery of the small intestine. Other techniques including direct injection into the spleen or liver. A bioartificial liver is designed to treat liver disease in the manner similar to a dialysis machine treats renal disease. Investigators use porcine hepatocytes or a transformed line of hepatocytes housed in a bioreactor allowing plasma from patients with liver failure to perfuse through it. It can be used either as a bridge to liver transplantation or to allow recovery of the native liver.

Artificial and bioartificial livers have been developed for use as a bridge to transplant in patients with liver failure or to allow recovery in persons with acute liver failure. Liu, et al. (2004) reported on the results of a meta-analysis of twelve trials of artificial or bioartificial support systems versus standard medical therapy, involving 483 patients, and two trials comparing different artificial support systems, involving 105 patients. Most trials had unclear methodological quality. Compared to standard medical therapy, support systems had no significant effect on mortality (relative risk 0.86; 95% confidence interval 0.65-1.12) or bridging to liver transplantation (relative risk 0.87; 95% confidence interval 0.73-1.05), but a significant beneficial effect on hepatic encephalopathy (relative risk 0.67; 95% confidence interval 0.52-0.86). Subgroup analysis indicated that artificial and bioartificial livers may reduce mortality by one-third in acute-on-chronic liver failure (relative risk 0.67; 95% confidence interval 0.51-0.90), but not in acute liver failure (relative risk 0.95; 95% confidence interval 0.71-1.29). The authors noted that the incidence of adverse events was inconsistently reported. The authors concluded that, although artificial support systems may reduce mortality in acute-on-chronic liver failure, “considering the strength of the evidence additional randomised clinical trials are needed before any support system can be recommended for routine use.”

More recently, Demetriou, et al. (2004) reported on the first prospective, randomized controlled trial of bioartificial liver, the HepatAssist Liver Support System in 171 patients with severe acute liver failure, including both fulminant/subfulminant hepatic failure and primary nonfunction following liver transplantation. For the entire patient population, survival at 30 days was 71% for patients assigned to the bioartificial liver versus 62% for patients in the control group (p = 0.26). After exclusion of primary nonfunction patients, survival was 73% for persons assigned to the bioartificial liver versus 59% for persons in the control group (p = 0.12). When survival was analyzed accounting for confounding factors, in the entire patient population, there was no difference between the two groups (risk ratio = 0.67; p = 0.13). However, differences in survival between bioartificial liver and control patients with fulminant/subfulminant hepatic failure reached marginal statistical significance (risk ratio = 0.56; p = 0.048). The authors concluded that this study demonstrated improved survival in patients with fulminant/subfulminant hepatic failure. These results would need to be confirmed in additional prospective randomized studies before conclusions can be drawn about the effectiveness of the bioartificial liver.

Dimmock et al (2008) noted that deoxyguanosine kinase (DGUOK) deficiency is the commonest type of mitochondrial DNA depletion associated with a hepatocerebral phenotype. These researchers assessed predictors of survival and therapeutic options in patients with DGUOK deficiency. A systematic search of MEDLINE, LILAC, and SCIELO was performed to identify peer-reviewed clinical trials, randomized controlled trials, meta-analyses, and other studies with clinical pertinence. Deoxyguanosine kinase deficiency was searched with the terms dGK, DGUOK, mitochondrial DNA depletion, mtDNA, and hepatocerebral. Bibliographies of identified articles were reviewed for additional references. A total of 13 identified studies met the inclusion criteria and were used in this study. The analysis revealed that DGUOK deficiency is associated with a variable clinical phenotype. Long-term survival is best predicted by the absence of profound hypotonia, significant psychomotor retardation, or nystagmus. In the presence of these features, there is increased mortality, and liver transplantation does not confer increased survival. The authors concluded that liver transplantation appears to be futile in the presence of specific neurological signs or symptoms in patients affected with DGUOK deficiency. Conversely, in the absence of these neurological features, liver transplantation may be considered a potential treatment.

  1. Bancel B, Patricot LM, Caillon P, et al. [Hepatic epithelioid hemangioendothelioma. A case with liver transplantation. Review of the literature.] Ann Pathol. 1993;13(1):23-28.
  2. Chui AK, Jayasundera MV, Haghighi KS, et al. Octreotide scintigraphy: A prerequisite for liver transplantation for metastatic gastrinoma. Aust N Z J Surg. 1998;68(6):458-460.
  3. Gottwald T, Koveker G, Busing M, et al. Diagnosis and management of metastatic gastrinoma by multimodality treatment including liver transplantation: Report of a case. Surg Today. 1998;28(5):551-558.
  4. Benhamou G, Marmuse JP, Le Goff JY, et al. [Pancreatic gastrinoma with hepatic metastasis treated by supra-mesocolic exenteration and hepatic transplantation.] Presse Med. 1990;19(9):432.
  5. Alsina AE, Bartus S, Hull D, et al. Liver transplant for metastatic neuroendocrine tumor. J Clin Gastroenterol. 1990;12(5):533-537.
  6. Katzenstein HM, Rigsby C, Shaw PH, et al. Novel therapeutic approaches in the treatment of children with hepatoblastoma. J Pediatr Hematol Oncol. 2002;24(9):751-755.
  7. Srinivasan P, McCall J, Pritchard J, et al. Orthotopic liver transplantation for unresectable hepatoblastoma. Transplantation. 2002;74(5):652-655.
  8. Pimpalwar AP, Sharif K, Ramani P, et al. Strategy for hepatoblastoma management: Transplant versus nontransplant surgery. J Pediatr Surg. 2002;37(2):240-245.
  9. Chardot C, Saint Martin C, Gilles A, et al. Living-related liver transplantation and vena cava reconstruction after total hepatectomy including the vena cava for hepatoblastoma. Transplantation. 2002;73(1):90-92.
  10. Molmenti EP, Nagata D, Roden J, et al. Liver transplantation for hepatoblastoma in the pediatric population. Transplant Proc. 2001;33(1-2):1749.
  11. Reyes JD, Carr B, Dvorchik I, et al. Liver transplantation and chemotherapy for hepatoblastoma and hepatocellular cancer in childhood and adolescence. J Pediatr. 2000;136(6):795-804.
  12. Al-Qabandi W, Jenkinson HC, Buckels JA, et al. Orthotopic liver transplantation for unresectable hepatoblastoma: A single center`s experience. J Pediatr Surg. 1999;34(8):1261-1264.
  13. Achilleos OA, Buist LJ, Kelly DA, et al. Unresectable hepatic tumors in childhood and the role of liver transplantation. J Pediatr Surg. 1996;31(11):1563-1567.
  14. Superina R, Bilik R. Results of liver transplantation in children with unresectable liver tumors. J Pediatr Surg. 1996;31(6):835-839.
  15. Pichlmayr R, Weimann A, Oldhafer KJ, et al. Role of liver transplantation in the treatment of unresectable liver cancer. World J Surg. 1995;19(6):807-813.
  16. Lockwood L, Heney D, Giles GR, et al. Cisplatin-resistant metastatic hepatoblastoma: Complete response to carboplatin, etoposide, and liver transplantation. Med Pediatr Oncol. 1993;21(7):517-520.
  17. Tagge EP, Tagge DU, Reyes J, et al. Resection, including transplantation, for hepatoblastoma and hepatocellular carcinoma: Impact on survival. J Pediatr Surg. 1992;27(3):292-297.
  18. Koneru B, Flye MW, Busuttil RW, et al. Liver transplantation for hepatoblastoma. The American experience. Ann Surg. 1991;213(2):118-121.
  19. Carithers RL Jr. Liver transplantation. American Association for the Study of Liver Diseases. Liver Transpl. 2000;6(1):122-135.
  20. Krowka MJ. Hepatopulmonary syndrome: Recent literature (1997 to 1999) and implications for liver transplantation. Liver Transpl. 2000;6(4 Suppl 1):S31-S35.
  21. Aboussouan LS, Stoller JK. The hepatopulmonary syndrome. Baillieres Best Pract Res Clin Gastroenterol. 2000;14(6):1033-1048.
  22. Das K, Kar P. Hepatopulmonary syndrome. J Assoc Physicians India. 2002;50:1049-1056.
  23. Hoekstra R, Chamuleau RA. Recent developments on human cell lines for the bioartificial liver. Int J Artif Organs. 2002;25(3):182-191.
  24. Ryder SD; British Society of Gastroenterology. Guidelines for the diagnosis and treatment of hepatocellular carcinoma (HCC) in adults. Gut. 2003;52 Suppl 3:iii1-8.
  25. Krasko A, Deshpande K, Bonvino S. Liver failure, transplantation, and critical care. Crit Care Clin. 2003;19(2):155-183.
  26. Noorani HZ, McGahan L. Criteria for selection of adult recipients for heart, cadaveric kidney and liver transplantation. Ottawa, ON: Canadian Coordinating Office for Health Technology Assessment (CCOHTA); 1999.
  27. Swedish Council on Technology Assessment in Health Care (SBU). Dialysis for acute hepatic failure - early assessment briefs (ALERT). Stockholm, Sweden: SBU; 2000.
  28. Pons JMV. Living donor liver transplant. Barcelona, Spain: Catalan Agency for Health Technology Assessment and Research (CAHTA); 2001.
  29. Agency for Healthcare Research and Quality (AHRQ). Morbidity and mortality among adult living donors undergoing right hepatic lobectomy for adult recipients (living donor liver transplantation) - systematic review. Rockville, MD: AHRQ; 2001.
  30. Alberta Heritage Foundation for Medical Research (AHFMR). Liver Dialysis Unit System. Edmonton, AB: AHFMR; 2000.
  31. Devlin J, O`Grady J. Indications for referral and assessment in adult liver transplantation: A clinical guideline. BSG Guidelines in Gastroenterology. London, UK: British Society of Gastroenterology (BSG); September 2000.
  32. Beavers KL, Bonis PAL, Lau J. Liver transplantation for patients with hepatobiliary malignancies other than hepatocellular carcinoma. Rockville, MD: Agency for Healthcare Research and Quality (AHRQ); 2001.
  33. National Horizon Scanning Centre (NHSC). MARS: A liver assist device - horizon scanning review. Birmingham, UK: NHSC; 2003.
  34. Comite d` Evaluation et de Diffusion des Innovations Technologiques (CEDIT). MARS liver support (Molecular Adsorbents Recirculating System). Paris, France: CEDIT; 2003.
  35. Liu J, Gluud L, Als-Nielsen B, Gluud C. Artificial and bioartificial support systems for liver failure. Cochrane Database Syst Rev. 2004;1:CD003628.
  36. Demetriou AA, Brown RS Jr, Busuttil RW, et al. Prospective, randomized, multicenter, controlled trial of a bioartificial liver in treating acute liver failure. Ann Surg. 2004;239(5):660-670.
  37. Canadian Coordinating Office for Health Technology Assessment (CCOHTA). Living donor liver transplantation. Pre-Assessment No. 24. Ottawa, ON: CCOHTA; October 2003.
  38. National Institute for Clinical Excellence (NICE). Extracorporeal albumin dialysis for acute-on-chronic liver failure. Interventional Procedure Guidance 45. London, UK: NICE; February 2004.
  39. Scott A. Living donor liver transplantation in children. IP-21 Information Paper. Edmonton, AB: Alberta Heritage Foundation for Medical Research (AHFMR); 2004.
  40. Middleton P, Duffield M, Lynch S, et al. Live donor liver transplantation adult outcomes: A systematic review. ASERNIP-S Report No. 22 (Adult Donor Outcomes) and ASERNIP-S Report No. 34 (Adult Recipient Outcomes). Stepney, South Australia: Australian Safety and Efficacy Register of New Interventional Procedures - Surgical (ASERNIP-S); October 29, 2004.
  41. de Rave S, Hansen BE, Groenland TH, et al. Heterotopic vs. orthotopic liver transplantation for chronic liver disease: A case-control comparison of short-term and long-term outcomes. Liver Transpl. 2005;11(4):396-401.
  42. Harimoto N, Taketomi A, Kitagawa D, et al. The newly established human hepatocyte cell line: Application for the bioartificial liver. J Hepatol. 2005;42(4):557-564.
  43. United Network for Organ Sharing (UNOS). MELD/PELD calculator. UNOS Resources. Richmond, VA: UNOS; 2005. Available at:
  44. Murray KF, Carithers RL Jr. AASLD practice guidelines: Evaluation of the patient for liver transplantation. Hepatology. 2005;41(6):1407-1432.
  45. National Health Service, UKTransplant, Liver organ allocation. Organ Allocation. London, UK: UKTransplant; 2006. Available at:
  46. Hoeper MM, Krowka MJ, Strassburg CP. Portopulmonary hypertension and hepatopulmonary syndrome. Lancet. 2004363(9419):1461-1468.
  47. Galie N, Torbicki A, Barst R, et al.; Task Force. Guidelines on diagnosis and treatment of pulmonary arterial hypertension. The Task Force on Diagnosis and Treatment of Pulmonary Arterial Hypertension of the European Society of Cardiology. Eur Heart J. 2004;25(24):2243-2278.
  48. Badesch DB, Abman SH, Ahearn GS, et al. Medical therapy for pulmonary arterial hypertension: ACCP evidence-based clinical practice guidelines. Chest. 2004;126(1 Suppl):35S-62S.
  49. National Institute for Health and Clinical Excellence (NICE). Living-donor liver transplantation. Interventional Procedure Guidance 194. London, UK: NICE; 2006. 
  50. Chamuleau RA, Poyck PP, van de Kerkhove MP. Bioartificial liver: Its pros and cons. Ther Apher Dial. 2006;10(2):168-174.
  51. Voigt MD, Zimmerman B, Katz DA, Rayhill SC. New national liver transplant allocation policy: Is the regional review board process fair? Liver Transplant. 2004;10(5):666-674.  
  52. Ibrahim Z, Busch J, Awwad M, et al. Selected physiologic compatibilities and incompatibilities between human and porcine organ systems. Xenotransplantation. 2006;13(6):488-499. 
  53. Mehrabi A, Kashfi A, Fonouni H, et al. Primary malignant hepatic epithelioid hemangioendothelioma: A comprehensive review of the literature with emphasis on the surgical therapy. Cancer. 2006;107(9):2108-2121.
  54. Elsharkawi M, Staib L, Henne-Bruns D, Mayer J. Complete remission of postransplant lung metastases from hepatocellular carcinoma under therapy with sirolimus and mycophenolate mofetil. Transplantation. 2005;79(7):855-857.
  55. Bazan HA, McMurtry KA, Waters PF, Thung SN. Surgical resection of pulmonary metastases after orthotopic liver transplantation for hepatocellular carcinoma. Transplantation. 2002;73(6):1007-1008.
  56. Said A, Einstein M, Lucey MR. Liver transplantation: an update 2007. Curr Opin Gastroenterol. 2007;23(3):292-298.
  57. Segev DL, Sozio SM, Shin EJ, et al. Steroid avoidance in liver transplantation: Meta-analysis and meta-regression of randomized trials. Liver Transpl. 2008;14(4):512-525.
  58. Gurusamy KS, Kumar Y, Davidson BR. Methods of preventing bacterial sepsis and wound complications for liver transplantation. Cochrane Database Syst Rev. 2008;(4):CD006660.
  59. Dimmock DP, Dunn JK, Feigenbaum A, et al. Abnormal neurological features predict poor survival and should preclude liver transplantation in patients with deoxyguanosine kinase deficiency. Liver Transpl. 2008;14(10):1480-1485.

Application to Products
This policy applies to all health plans administered by QualChoice, both those insured by QualChoice and those that are self-funded by the sponsoring employer, unless there is indication in this policy otherwise or a stated exclusion in your medical plan booklet. Consult the individual plan sponsor Summary Plan Description (SPD) for self-insured plans or the specific Evidence of Coverage (EOC) for those plans insured by QualChoice. In the event of a discrepancy between this policy and a self-insured customer’s SPD or the specific QualChoice EOC, the SPD or EOC, as applicable, will prevail. State and federal mandates will be followed as they apply.
Changes: QualChoice reserves the right to alter, amend, change or supplement benefit interpretations as needed.
This policy has recently been updated. Please use the index above or enter policy title in search bar for the latest version.